Methods
Embeddings
Embeddings databases are the engine that delivers semantic search. Data is transformed into embeddings vectors where similar concepts will produce similar vectors. Indexes both large and small are built with these vectors. The indexes are used to find results that have the same meaning, not necessarily the same keywords.
Source code in txtai/embeddings/base.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
|
__init__(config=None, models=None, **kwargs)
Creates a new embeddings index. Embeddings indexes are thread-safe for read operations but writes must be synchronized.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
embeddings configuration |
None
|
|
models
|
models cache, used for model sharing between embeddings |
None
|
|
kwargs
|
additional configuration as keyword args |
{}
|
Source code in txtai/embeddings/base.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
batchexplain(queries, texts=None, limit=None)
Explains the importance of each input token in text for a list of queries. This method requires either content to be enabled or texts to be provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
queries
|
input queries |
required | |
texts
|
optional list of (text|list of tokens), otherwise runs search queries |
None
|
|
limit
|
optional limit if texts is None |
None
|
Returns:
Type | Description |
---|---|
list of dict per input text per query where a higher token scores represents higher importance relative to the query |
Source code in txtai/embeddings/base.py
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
|
batchsearch(queries, limit=None, weights=None, index=None, parameters=None, graph=False)
Finds documents most similar to the input queries. This method will run either an index search or an index + database search depending on if a database is available.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
queries
|
input queries |
required | |
limit
|
maximum results |
None
|
|
weights
|
hybrid score weights, if applicable |
None
|
|
index
|
index name, if applicable |
None
|
|
parameters
|
list of dicts of named parameters to bind to placeholders |
None
|
|
graph
|
return graph results if True |
False
|
Returns:
Type | Description |
---|---|
list of (id, score) per query for index search |
|
list of dict per query for an index + database search |
|
list of graph per query when graph is set to True |
Source code in txtai/embeddings/base.py
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
|
batchsimilarity(queries, data)
Computes the similarity between list of queries and list of data. Returns a list of (id, score) sorted by highest score per query, where id is the index in data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
queries
|
input queries |
required | |
data
|
list of data |
required |
Returns:
Type | Description |
---|---|
list of (id, score) per query |
Source code in txtai/embeddings/base.py
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
|
batchterms(queries)
Extracts keyword terms from a list of queries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
queries
|
list of queries |
required |
Returns:
Type | Description |
---|---|
list of queries reduced down to keyword term strings |
Source code in txtai/embeddings/base.py
491 492 493 494 495 496 497 498 499 500 501 502 |
|
batchtransform(documents, category=None, index=None)
Transforms documents into embeddings vectors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
documents
|
iterable of (id, data, tags), (id, data) or data |
required | |
category
|
category for instruction-based embeddings |
None
|
|
index
|
index name, if applicable |
None
|
Returns:
Type | Description |
---|---|
embeddings vectors |
Source code in txtai/embeddings/base.py
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
|
close()
Closes this embeddings index and frees all resources.
Source code in txtai/embeddings/base.py
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
|
count()
Total number of elements in this embeddings index.
Returns:
Type | Description |
---|---|
number of elements in this embeddings index |
Source code in txtai/embeddings/base.py
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
delete(ids)
Deletes from an embeddings index. Returns list of ids deleted.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
list of ids to delete |
required |
Returns:
Type | Description |
---|---|
list of ids deleted |
Source code in txtai/embeddings/base.py
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
|
exists(path=None, cloud=None, **kwargs)
Checks if an index exists at path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
input path |
None
|
|
cloud
|
cloud storage configuration |
None
|
|
kwargs
|
additional configuration as keyword args |
{}
|
Returns:
Type | Description |
---|---|
True if index exists, False otherwise |
Source code in txtai/embeddings/base.py
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
|
explain(query, texts=None, limit=None)
Explains the importance of each input token in text for a query. This method requires either content to be enabled or texts to be provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
input query |
required | |
texts
|
optional list of (text|list of tokens), otherwise runs search query |
None
|
|
limit
|
optional limit if texts is None |
None
|
Returns:
Type | Description |
---|---|
list of dict per input text where a higher token scores represents higher importance relative to the query |
Source code in txtai/embeddings/base.py
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
|
index(documents, reindex=False)
Builds an embeddings index. This method overwrites an existing index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
documents
|
iterable of (id, data, tags), (id, data) or data |
required | |
reindex
|
if this is a reindex operation in which case database creation is skipped, defaults to False |
False
|
Source code in txtai/embeddings/base.py
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
info()
Prints the current embeddings index configuration.
Source code in txtai/embeddings/base.py
708 709 710 711 712 713 714 715 |
|
isdense()
Checks if this instance has an associated ANN instance.
Returns:
Type | Description |
---|---|
True if this instance has an associated ANN, False otherwise |
Source code in txtai/embeddings/base.py
727 728 729 730 731 732 733 734 735 |
|
issparse()
Checks if this instance has an associated scoring instance with term indexing enabled.
Returns:
Type | Description |
---|---|
True if term index is enabled, False otherwise |
Source code in txtai/embeddings/base.py
717 718 719 720 721 722 723 724 725 |
|
isweighted()
Checks if this instance has an associated scoring instance with term weighting enabled.
Returns:
Type | Description |
---|---|
True if term weighting is enabled, False otherwise |
Source code in txtai/embeddings/base.py
737 738 739 740 741 742 743 744 745 |
|
load(path=None, cloud=None, config=None, **kwargs)
Loads an existing index from path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
input path |
None
|
|
cloud
|
cloud storage configuration |
None
|
|
config
|
configuration overrides |
None
|
|
kwargs
|
additional configuration as keyword args |
{}
|
Returns:
Type | Description |
---|---|
Embeddings |
Source code in txtai/embeddings/base.py
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
|
reindex(config=None, function=None, **kwargs)
Recreates embeddings index using config. This method only works if document content storage is enabled.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config
|
new config |
None
|
|
function
|
optional function to prepare content for indexing |
None
|
|
kwargs
|
additional configuration as keyword args |
{}
|
Source code in txtai/embeddings/base.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
save(path, cloud=None, **kwargs)
Saves an index in a directory at path unless path ends with tar.gz, tar.bz2, tar.xz or zip. In those cases, the index is stored as a compressed file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
output path |
required | |
cloud
|
cloud storage configuration |
None
|
|
kwargs
|
additional configuration as keyword args |
{}
|
Source code in txtai/embeddings/base.py
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
|
score(documents)
Builds a term weighting scoring index. Only used by word vectors models.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
documents
|
iterable of (id, data, tags), (id, data) or data |
required |
Source code in txtai/embeddings/base.py
94 95 96 97 98 99 100 101 102 103 104 |
|
search(query, limit=None, weights=None, index=None, parameters=None, graph=False)
Finds documents most similar to the input query. This method will run either an index search or an index + database search depending on if a database is available.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
input query |
required | |
limit
|
maximum results |
None
|
|
weights
|
hybrid score weights, if applicable |
None
|
|
index
|
index name, if applicable |
None
|
|
parameters
|
dict of named parameters to bind to placeholders |
None
|
|
graph
|
return graph results if True |
False
|
Returns:
Type | Description |
---|---|
list of (id, score) for index search |
|
list of dict for an index + database search |
|
graph when graph is set to True |
Source code in txtai/embeddings/base.py
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
|
similarity(query, data)
Computes the similarity between query and list of data. Returns a list of (id, score) sorted by highest score, where id is the index in data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
input query |
required | |
data
|
list of data |
required |
Returns:
Type | Description |
---|---|
list of (id, score) |
Source code in txtai/embeddings/base.py
407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
|
terms(query)
Extracts keyword terms from a query.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query
|
input query |
required |
Returns:
Type | Description |
---|---|
query reduced down to keyword terms |
Source code in txtai/embeddings/base.py
478 479 480 481 482 483 484 485 486 487 488 489 |
|
transform(document, category=None, index=None)
Transforms document into an embeddings vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
documents
|
iterable of (id, data, tags), (id, data) or data |
required | |
category
|
category for instruction-based embeddings |
None
|
|
index
|
index name, if applicable |
None
|
Returns:
Type | Description |
---|---|
embeddings vector |
Source code in txtai/embeddings/base.py
293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
upsert(documents)
Runs an embeddings upsert operation. If the index exists, new data is appended to the index, existing data is updated. If the index doesn't exist, this method runs a standard index operation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
documents
|
iterable of (id, data, tags), (id, data) or data |
required |
Source code in txtai/embeddings/base.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
|