Skip to content

HFTrainer

pipeline pipeline

Trains a new Hugging Face Transformer model using the Trainer framework.

Example

The following shows a simple example using this pipeline.

import pandas as pd

from datasets import load_dataset

from txtai.pipeline import HFTrainer

trainer = HFTrainer()

# Pandas DataFrame
df = pd.read_csv("training.csv")
model, tokenizer = trainer("bert-base-uncased", df)

# Hugging Face dataset
ds = load_dataset("glue", "sst2")
model, tokenizer = trainer("bert-base-uncased", ds["train"], columns=("sentence", "label"))

# List of dicts
dt = [{"text": "sentence 1", "label": 0}, {"text": "sentence 2", "label": 1}]]
model, tokenizer = trainer("bert-base-uncased", dt)

# Support additional TrainingArguments
model, tokenizer = trainer("bert-base-uncased", dt, 
                            learning_rate=3e-5, num_train_epochs=5)

All TrainingArguments are supported as function arguments to the trainer call.

See the links below for more detailed examples.

Notebook Description
Train a text labeler Build text sequence classification models Open In Colab
Train without labels Use zero-shot classifiers to train new models Open In Colab
Train a QA model Build and fine-tune question-answering models Open In Colab
Train a language model from scratch Build new language models Open In Colab

Training tasks

The HFTrainer pipeline builds and/or fine-tunes models for following training tasks.

Task Description
language-generation Causal language model for text generation (e.g. GPT)
language-modeling Masked language model for general tasks (e.g. BERT)
question-answering Extractive question-answering model, typically with the SQuAD dataset
sequence-sequence Sequence-Sequence model (e.g. T5)
text-classification Classify text with a set of labels
token-detection ELECTRA-style pre-training with replaced token detection

PEFT

Parameter-Efficient Fine-Tuning (PEFT) is supported through Hugging Face's PEFT library. Quantization is provided through bitsandbytes. See the examples below.

from txtai.pipeline import HFTrainer

trainer = HFTrainer()
trainer(..., quantize=True, lora=True)

When these parameters are set to True, they use default configuration. This can also be customized.

quantize = {
    "load_in_4bit": True,
    "bnb_4bit_use_double_quant": True,
    "bnb_4bit_quant_type": "nf4",
    "bnb_4bit_compute_dtype": "bfloat16"
}

lora = {
    "r": 16,
    "lora_alpha": 8,
    "target_modules": "all-linear",
    "lora_dropout": 0.05,
    "bias": "none"
}

trainer(..., quantize=quantize, lora=lora)

The parameters also accept transformers.BitsAndBytesConfig and peft.LoraConfig instances.

See the following PEFT documentation links for more information.

Merge

An important parameter for language-generation and language-modeling tasks is merge or the packing of data into chunks.

It supports the following options.

  • concat (default) - text is split into chunks up to maxlength, data can be split across multiple chunks
  • pack - text is split into chunks up to maxlength, data guaranteed to be in same chunk, chunks can be smaller than maxlength
  • None - disables merging

Merging helps reduce training time as data can be processed efficiently without padding. concat maximizes this as it guarantees each chunk will be up to maxlength size. pack is a middle ground where data is combined but records are preserved.

For general language modeling tasks like masked language modeling, concat is the best choice. For instruction/prompt fine-tuning, pack or None are the better choices as it guarantees complex logic is not split across chunks.

Methods

Python documentation for the pipeline.

__call__(base, train, validation=None, columns=None, maxlength=None, stride=128, task='text-classification', prefix=None, metrics=None, tokenizers=None, checkpoint=None, quantize=None, lora=None, merge='concat', **args)

Builds a new model using arguments.

Parameters:

Name Type Description Default
base

path to base model, accepts Hugging Face model hub id, local path or (model, tokenizer) tuple

required
train

training data

required
validation

validation data

None
columns

tuple of columns to use for text/label, defaults to (text, None, label)

None
maxlength

maximum sequence length, defaults to tokenizer.model_max_length

None
stride

chunk size for splitting data for QA tasks

128
task

optional model task or category, determines the model type, defaults to "text-classification"

'text-classification'
prefix

optional source prefix

None
metrics

optional function that computes and returns a dict of evaluation metrics

None
tokenizers

optional number of concurrent tokenizers, defaults to None

None
checkpoint

optional resume from checkpoint flag or path to checkpoint directory, defaults to None

None
quantize

quantization configuration to pass to base model

None
lora

lora configuration to pass to PEFT model

None
merge

determines how chunks are combined for language modeling tasks - "concat" (default), "pack" or None

'concat'
args

training arguments

{}

Returns:

Type Description

(model, tokenizer)

Source code in txtai/pipeline/train/hftrainer.py
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def __call__(
    self,
    base,
    train,
    validation=None,
    columns=None,
    maxlength=None,
    stride=128,
    task="text-classification",
    prefix=None,
    metrics=None,
    tokenizers=None,
    checkpoint=None,
    quantize=None,
    lora=None,
    merge="concat",
    **args
):
    """
    Builds a new model using arguments.

    Args:
        base: path to base model, accepts Hugging Face model hub id, local path or (model, tokenizer) tuple
        train: training data
        validation: validation data
        columns: tuple of columns to use for text/label, defaults to (text, None, label)
        maxlength: maximum sequence length, defaults to tokenizer.model_max_length
        stride: chunk size for splitting data for QA tasks
        task: optional model task or category, determines the model type, defaults to "text-classification"
        prefix: optional source prefix
        metrics: optional function that computes and returns a dict of evaluation metrics
        tokenizers: optional number of concurrent tokenizers, defaults to None
        checkpoint: optional resume from checkpoint flag or path to checkpoint directory, defaults to None
        quantize: quantization configuration to pass to base model
        lora: lora configuration to pass to PEFT model
        merge: determines how chunks are combined for language modeling tasks - "concat" (default), "pack" or None
        args: training arguments

    Returns:
        (model, tokenizer)
    """

    # Quantization / LoRA support
    if (quantize or lora) and not PEFT:
        raise ImportError('PEFT is not available - install "pipeline" extra to enable')

    # Parse TrainingArguments
    args = self.parse(args)

    # Set seed for model reproducibility
    set_seed(args.seed)

    # Load model configuration, tokenizer and max sequence length
    config, tokenizer, maxlength = self.load(base, maxlength)

    # Default tokenizer pad token if it's not set
    tokenizer.pad_token = tokenizer.pad_token if tokenizer.pad_token is not None else tokenizer.eos_token

    # Prepare parameters
    process, collator, labels = self.prepare(task, train, tokenizer, columns, maxlength, stride, prefix, merge, args)

    # Tokenize training and validation data
    train, validation = process(train, validation, os.cpu_count() if tokenizers and isinstance(tokenizers, bool) else tokenizers)

    # Create model to train
    model = self.model(task, base, config, labels, tokenizer, quantize)

    # Default config pad token if it's not set
    model.config.pad_token_id = model.config.pad_token_id if model.config.pad_token_id is not None else model.config.eos_token_id

    # Load as PEFT model, if necessary
    model = self.peft(task, lora, model)

    # Add model to collator
    if collator:
        collator.model = model

    # Build trainer
    trainer = Trainer(
        model=model,
        processing_class=tokenizer,
        data_collator=collator,
        args=args,
        train_dataset=train,
        eval_dataset=validation if validation else None,
        compute_metrics=metrics,
    )

    # Run training
    trainer.train(resume_from_checkpoint=checkpoint)

    # Run evaluation
    if validation:
        trainer.evaluate()

    # Save model outputs
    if args.should_save:
        trainer.save_model()
        trainer.save_state()

    # Put model in eval mode to disable weight updates and return (model, tokenizer)
    return (model.eval(), tokenizer)